
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 08: Random Variables and Random Vectors
Tuesday October 4, 2022

Lecturer: Laurent Lessard Scribe: Cory Lafleur

This lecture begins by describing random variables (x ∈ R). The properties of the probability
density function, the mean, and the variance are discussed along with some common distributions,
normal and χ2. Then, random vectors (x ∈ Rn) are introduced along with the related probability
density function, expected value, covariance, and multivariate distributions.

1 Random Variables

A random variable, x ∈ R, does not have a definitive value. Instead, it may take on a variety of
values associated with its probability density.

1.1 Probability Density Function

A function associated with a random variable such that f : R → R+. The higher the density
under a particular region of the probability density function (pdf), the more likely that value is to
occur.
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f(x)

P(a ≤ X ≤ b)

x

Figure 1: Example Probability Density Function

The probability is given by the area under the curve between two points. Therefore,

P(a ≤ X ≤ b) =

∫ b

a
f(x) dx.

The properties of the probability density function are:

• Positivity: f(x) ≥ 0 for all x.

• Integrates to one:
∫∞
−∞ f(x) dx =

∫
R f(x) dx = 1
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The cumulative density function (CDF) is defined as

F (x) :=

∫ x

−∞
f(t) dt.

Then we have limx→∞ F (x) = 1.

1.2 Numerical summaries

Mean (Expected Value) (µ):

E(x) =

∫
R
xf(x) dx. (1)

Variance (σ2):
Var(x) = E

[
(x−E(x))2

]
. (2)

Standard Deviation (σ): the positive square root of variance.

1.2.1 Transformation Properties

Expected Value of a Linear Transformation

E(ax+ b) = aE(x) + b.

where a, b ∈ R and x is a r.v.

Proof.

E(ax+ b)
(1)
=

∫
R
(ax+ b)f(x) dx

= a

∫
R
xf(x) dx+ b

∫
R
f(x) dx

= aE(x) + b.

■

Variance in Terms of Expected Value

Var(x) = E(x2)−E(x)2. (3)

Proof.

Var(x) = E[(x−E(x))2] from (2)

= E(x2 − 2xE(x) +E(x)2)

= E(x2)− 2E(xE(x)) +E(x)2

= E(x2)− 2E(x)2 +E(x)2

= E(x2)−E(x)2.

■
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Variance of a Linear Transformation

Var(ax+ b) = a2Var(x).

Proof.

Var(ax+ b) = E
[
((ax+ b)−E(ax+ b))2

]
= E

[
(ax+ b− aE(x)− b)2

]
= E

[
a2(x−E(x))2

]
= a2E

[
(x−E(x))2

]
= a2Var(x).

■

1.3 Normal Distributions

x ∼ N (µ, σ2)

x is normally distributed with mean µ and variance σ2.

µ− 3σ µ− 2σ µ− σ µ µ+ σ µ+ 2σ µ+ 3σ

68.3%

95.4%

99.7%

x

Figure 2: Normal Distribution

The equation of the probability density function of a normal distribution is

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

The expected value and variance are given by

E(x) = µ and Var(x) = σ2.

If x ∼ N (µ, σ2) then z = x−µ
σ ∼ N (0, 1) where N (0, 1) is the standard normal. Some useful

MATLAB commands:

• normpdf(x,mu,sigma) = f(x), where x ∼ N (µ, σ2)

• normcdf(x,mu,sigma) = F (x), where x ∼ N (µ, σ2)

• normpdf(x) = f(x), where x ∼ N (0, 1)

3



1.4 Chi Squared χ2

If w = z21 + z22 + · · · + z2k, where each zi ∼ N (0, 1) is a standard normal, then w ∼ χ2
k, where k is

the degrees of freedom.
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Figure 3: Plot of the PDF of χ2
k for different values of k.

The expected value and variance for w ∼ χ2
k are given by

E(w) = k and Var(w) = 2k.

As k → ∞, we also have χ2
k → N (k, 2k).

2 Random Vectors

A random vector, x ∈ Rn. We will again define the probability density function, summaries, and
distributions for random vectors.

2.1 Probability Density Function

A function associated with a random vector such that f : Rn → R+.

The probability that x lies within the set S is given by

P(x ∈ S) =

∫
S
f(x) dx.

The properties of the probability density function are:

• Positivity: f(x) ≥ 0 for all x.

• Integrates to one:
∫
·· ·

∫
Rn f(x1, . . . , xn) dx1 . . . dxn =

∫
Rn f(x) dx = 1
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Figure 4: Probability Density Function in R2.

2.2 Summaries

Expected Value (µ ∈ Rn):

E(x) =

∫
Rn

xf(x) dx.

Covariance (Σ ∈ Rn×n):
Cov(x) = E

[
(x−Ex)(x−Ex)T

]
. (4)

In R2

Cov(x) = E

[
(x1 −Ex1)

2 (x1 −Ex1)(x2 −Ex2)
(x1 −Ex1)(x2 −Ex2) (x2 −Ex2)

2

]
.

2.2.1 Properties

Linear Transformation
E(Ax+ b) = AE(x) + b.

Cov(Ax+ b) = ACov(x)AT.
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Proof.

Cov(Ax+ b)
(4)
= E

[
((Ax+ b)−E(Ax+ b))((Ax+ b)−E(Ax+ b))T

]
= E

[
(Ax+ b−AE(x)− b)(Ax+ b−AE(x)− b)T

]
= E

[
A(x−E(x))(x−E(x))TAT

]
= AE

[
(x−E(x))(x−E(x))T

]
AT

= ACov(x)AT.

■

Variance in Terms of Expected Value

Cov(x) = E
(
xxT

)
−E(x)E(x)T. (5)

The proof of this fact is analogous to the proof of (3).

Positive definiteness. The covariance matrix is positive definite. That is, Cov(x) ≻ 0.

To review, there are two equivalent definitions of positive definiteness. A symmetric matrix Q = QT

is positive definite (Q ≻ 0) if either of the following equivalent properties hold.

(i) All eigenvalues of Q are positive: λi > 0.

(ii) All quadratic forms of Q are positive: xTQx > 0 for all x ̸= 0.

Also, we can define a “negative definite” matrix Q ≺ 0 ⇐⇒ −Q ≻ 0. We also write that one
matrix is larger than another in the positive definite sense by writing Q ≻ R ⇐⇒ Q − R ≻ 0. If
a matrix has at least one positive eigenvalue and at least one negative eigenvalue, we say that it is
“indefinite”. To prove positive definiteness, we use the quadratic form definition.

Proof.

vTCov(x)v = vTE
[
(x−E(x))(x−E(x))T

]
v

= E
[
vT(x−E(x))(x−E(x))Tv

]
= E

[(
vT(x−E(x))

)2
]

This is the expected value of a quantity that is always nonnegative. The only way it can be zero
for all v ̸= 0 is if x = E(x). In other words, the random variable x needs to not be random at
all. In this case, we actually have Cov(x) = 0. If x is random, then the quadratic form is positive
whenever v ̸= 0, and therefore Cov(x) ≻ 0. ■

6



Expected Value of Quadratic Form If Q = QT and x is a random vector with E(x) = µ and
Cov(x) = Σ, then we can evaluate the expected value of a quadratic form using the formula

E
(
xTQx

)
= µTQµ+ tr(QΣ).

Proof. To prove this fact, we will use the notion of trace of a square matrix, which is just the sum of
the diagonal entries of the matrix. If A and B are matrices such that AB and BA are both square,
then the trace has the property tr(AB) = tr(BA). Now compute:

E
(
xTQx

)
= E

(
tr(xTQx)

)
since a = tr(a) for scalar a.

= E
(
tr(QxxT)

)
using tr(AB) = tr(BA)

= tr
(
E(QxxT))

)
trace and expectation commute

= tr
(
QE(xxT))

)
linearity of expectation

= tr
(
Q(Cov(x) +E(x)E(x)T)

)
using (5)

= tr
(
Q(Σ + µµT)

)
= tr(QΣ) + tr

(
QµµT

)
= µTQµ+ tr(QΣ) using tr(AB) = tr(BA) again

■

As a sanity check, we can verify that the formula has the correct limiting behavior. First, if x is
not random at all, then Σ = 0 and x = µ, and we obtain E(xTQx) = µTQµ, as expected. If x has
zero mean, then µ = 0 and E(xTQx) = tr(QΣ). So the quadratic form has a larger value when x
has more variance.

2.3 Multivariate Normal Distributions

We write this as: x ∼ N (µ,Σ), where µ is the mean and Σ is the covariance.

The probability density function (pdf) of a Multivariate Gaussian Distribution is given by:

f(x) =
1

(2π)
n
2 (detΣ)

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

If x ∼ N (µ,Σ), then z := Σ− 1
2 (x− µ) has a standard normal distribution, z ∼ N (0, I). To find the

matrix square root, take an eigenvalue decomposition: Σ = UΛUT. Because Σ ≻ 0 (it’s a covariance
matrix), the eigenvalue decomposition is the same as the singular value decomposition. The matrix
square root is:

Σ
1
2 = U


λ

1
2
1

. . .

λ
1
2
n

UT (6)
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Although a matrix has 2n possible square roots (we can write ±λ
1/2
i for each i), there is only one

that positive definite. The MATLAB command for computing this positive definite matrix square
root is sqrtm(A). This is different from sqrt(A), which is the element-wise square root (not the
same!).

In the single-variable case, we computed the probability that x ∼ N (µ, σ) lies in some symmetric
interval about the mean, i.e., P(µ − a ≤ x ≤ µ + a). The analogous quantity for a multivariate
Gaussian is the confidence ellipsoid.

Since the density f(x) is proportional to exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
, the contours of constant

density (and their interiors) are given by the nested sets:

Sα =
{
x ∈ Rn

∣∣∣ (x− µ)TΣ−1(x− µ) ≤ α
}

This set is an ellipsoid. To see why, make the standard normal substitution:

Sα =

{
x ∈ Rn

∣∣∣∣ ∥∥∥Σ−1/2(x− µ)
∥∥∥2 ≤ α

}
=

{
x ∈ Rn

∣∣ ∥z∥2 ≤ α
}

We have seen this sort of ellipse before. It is a standard control ellipsoid:{
x

∣∣∣∣ ∥∥∥Σ−1/2(x− µ)
∥∥∥2 ≤ α

}
=

{
µ+Σ1/2z

∣∣∣ ∥z∥ ≤ α
}
= µ+

{√
αΣ1/2w

∣∣∣ ∥w∥ ≤ 1
}

To plot this, we should compute the SVD (or eigenvalue) decomposition as in (6). Then the
confidence ellipsoid is centered at µ and has its axes pointing in the ui directions, with corresponding
lengths

√
α
√
λi.

The probability associated with this level ellipsoid is:

p = P(x ∈ Sα, x ∼ N (µ,Σ))

= P(∥z∥2 ≤ α, z ∼ N (0, I))

= P(z21 + · · ·+ z2n ≤ α, zi ∼ N (0, 1))

= P(w ≤ α, w ∼ χ2
n)

= Fχ2
n
(α)

In other words, the CDF of the Chi-squared distribution! To find which α corresponds to a desired
probability p, we can invert this cdf:

α = F−1
χ2
n
(p)

Some useful MATLAB commands for computing the CDF and inverse CDF of a Chi-squared dis-
tribution:

• CDF: p = chi2cdf(alpha,n)

• Inverse CDF: alpha = chi2inv(p,n)

Fig. 5 below shows an example of a n = 2 dimensional Gaussian with various contours shown.
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Figure 5: Confidence ellipsoids for different values of p. Each ellipse contains on average
a fraction p of all the points. If x ∼ N (µ,Σ), then the confidence ellipsoid for a given p
is the ellipsoid

{
x ∈ Rn

∣∣ (x− µ)TΣ−1(x− µ) ≤ α
}
, where α = F−1

χ2
n
(p). The ellipsoid is

centered at µ and its axes point in the directions ui with lengths
√
α
√
λi, where (λi, ui)

are the eigenvalue-eigenvector pairs of the covariance matrix Σ.
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