Lecture 08: Random Variables and Random Vectors

Tuesday October 4, 2022
Lecturer: Laurent Lessard
Scribe: Cory Lafleur

This lecture begins by describing random variables $(x \in \mathbb{R})$. The properties of the probability density function, the mean, and the variance are discussed along with some common distributions, normal and χ^{2}. Then, random vectors $\left(x \in \mathbb{R}^{n}\right)$ are introduced along with the related probability density function, expected value, covariance, and multivariate distributions.

1 Random Variables

A random variable, $x \in \mathbb{R}$, does not have a definitive value. Instead, it may take on a variety of values associated with its probability density.

1.1 Probability Density Function

A function associated with a random variable such that $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$. The higher the density under a particular region of the probability density function (pdf), the more likely that value is to occur.

Figure 1: Example Probability Density Function

The probability is given by the area under the curve between two points. Therefore,

$$
\mathbf{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x .
$$

The properties of the probability density function are:

- Positivity: $f(x) \geq 0$ for all x.
- Integrates to one: $\int_{-\infty}^{\infty} f(x) d x=\int_{\mathbb{R}} f(x) d x=1$

The cumulative density function (CDF) is defined as

$$
F(x):=\int_{-\infty}^{x} f(t) d t
$$

Then we have $\lim _{x \rightarrow \infty} F(x)=1$.

1.2 Numerical summaries

Mean (Expected Value) (μ) :

$$
\begin{equation*}
\mathbf{E}(x)=\int_{\mathbb{R}} x f(x) d x . \tag{1}
\end{equation*}
$$

Variance $\left(\sigma^{2}\right)$:

$$
\begin{equation*}
\operatorname{Var}(x)=\mathbf{E}\left[(x-\mathbf{E}(x))^{2}\right] \tag{2}
\end{equation*}
$$

Standard Deviation (σ) : the positive square root of variance.

1.2.1 Transformation Properties

Expected Value of a Linear Transformation

$$
\mathbf{E}(a x+b)=a \mathbf{E}(x)+b
$$

where $a, b \in \mathbb{R}$ and x is a r.v.
Proof.

$$
\begin{aligned}
\mathbf{E}(a x+b) & \stackrel{(1)}{=} \int_{\mathbb{R}}(a x+b) f(x) d x \\
& =a \int_{\mathbb{R}} x f(x) d x+b \int_{\mathbb{R}} f(x) d x \\
& =a \mathbf{E}(x)+b
\end{aligned}
$$

Variance in Terms of Expected Value

$$
\begin{equation*}
\operatorname{Var}(x)=\mathbf{E}\left(x^{2}\right)-\mathbf{E}(x)^{2} \tag{3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\operatorname{Var}(x) & =\mathbf{E}\left[(x-\mathbf{E}(x))^{2}\right] \\
& =\mathbf{E}\left(x^{2}-2 x \mathbf{E}(x)+\mathbf{E}(x)^{2}\right) \\
& =\mathbf{E}\left(x^{2}\right)-2 \mathbf{E}(x \mathbf{E}(x))+\mathbf{E}(x)^{2} \\
& =\mathbf{E}\left(x^{2}\right)-2 \mathbf{E}(x)^{2}+\mathbf{E}(x)^{2} \\
& =\mathbf{E}\left(x^{2}\right)-\mathbf{E}(x)^{2}
\end{aligned}
$$

Variance of a Linear Transformation

$$
\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x) .
$$

Proof.

$$
\begin{aligned}
\operatorname{Var}(a x+b) & =\mathbf{E}\left[((a x+b)-\mathbf{E}(a x+b))^{2}\right] \\
& =\mathbf{E}\left[(a x+b-a \mathbf{E}(x)-b)^{2}\right] \\
& =\mathbf{E}\left[a^{2}(x-\mathbf{E}(x))^{2}\right] \\
& =a^{2} \mathbf{E}\left[(x-\mathbf{E}(x))^{2}\right] \\
& =a^{2} \mathbf{V a r}(x) .
\end{aligned}
$$

1.3 Normal Distributions

$$
x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

x is normally distributed with mean μ and variance σ^{2}.

Figure 2: Normal Distribution
The equation of the probability density function of a normal distribution is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

The expected value and variance are given by

$$
\mathbf{E}(x)=\mu \quad \text { and } \quad \operatorname{Var}(x)=\sigma^{2} .
$$

If $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then $z=\frac{x-\mu}{\sigma} \sim \mathcal{N}(0,1)$ where $\mathcal{N}(0,1)$ is the standard normal. Some useful MATLAB commands:

- normpdf $(\mathrm{x}, \mathrm{mu}$, sigma $)=f(x)$, where $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- $\operatorname{normcdf}(\mathrm{x}, \mathrm{mu}$, sigma $)=F(x)$, where $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- $\operatorname{normpdf}(\mathrm{x})=f(x)$, where $x \sim \mathcal{N}(0,1)$

1.4 Chi Squared χ^{2}

If $w=z_{1}^{2}+z_{2}^{2}+\cdots+z_{k}^{2}$, where each $z_{i} \sim \mathcal{N}(0,1)$ is a standard normal, then $w \sim \chi_{k}^{2}$, where k is the degrees of freedom.

Figure 3: Plot of the PDF of χ_{k}^{2} for different values of k.
The expected value and variance for $w \sim \chi_{k}^{2}$ are given by

$$
\mathbf{E}(w)=k \quad \text { and } \quad \operatorname{Var}(w)=2 k .
$$

As $k \rightarrow \infty$, we also have $\chi_{k}^{2} \rightarrow \mathcal{N}(k, 2 k)$.

2 Random Vectors

A random vector, $x \in \mathbb{R}^{n}$. We will again define the probability density function, summaries, and distributions for random vectors.

2.1 Probability Density Function

A function associated with a random vector such that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$.
The probability that x lies within the set S is given by

$$
\mathbf{P}(x \in S)=\int_{S} f(x) d x
$$

The properties of the probability density function are:

- Positivity: $f(x) \geq 0$ for all x.
- Integrates to one: $\int \cdots \int_{\mathbb{R}^{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=\int_{\mathbb{R}^{n}} f(x) d x=1$

Figure 4: Probability Density Function in \mathbb{R}^{2}.

2.2 Summaries

Expected Value $\left(\mu \in R^{n}\right)$:

$$
\mathbf{E}(x)=\int_{\mathbb{R}^{n}} x f(x) d x
$$

Covariance $\left(\Sigma \in R^{n \times n}\right)$:

$$
\begin{equation*}
\operatorname{Cov}(x)=\mathbf{E}\left[(x-\mathbf{E} x)(x-\mathbf{E} x)^{\boldsymbol{\top}}\right] . \tag{4}
\end{equation*}
$$

In \mathbb{R}^{2}

$$
\operatorname{Cov}(x)=\mathbf{E}\left[\begin{array}{cc}
\left(x_{1}-\mathbf{E} x_{1}\right)^{2} & \left(x_{1}-\mathbf{E} x_{1}\right)\left(x_{2}-\mathbf{E} x_{2}\right) \\
\left(x_{1}-\mathbf{E} x_{1}\right)\left(x_{2}-\mathbf{E} x_{2}\right) & \left(x_{2}-\mathbf{E} x_{2}\right)^{2}
\end{array}\right] .
$$

2.2.1 Properties

Linear Transformation

$$
\begin{gathered}
\mathbf{E}(A x+b)=A \mathbf{E}(x)+b \\
\operatorname{Cov}(A x+b)=A \mathbf{C o v}(x) A^{\top} .
\end{gathered}
$$

Proof.

$$
\begin{aligned}
\operatorname{Cov}(A x+b) & \stackrel{(4)}{=} \mathbf{E}\left[((A x+b)-\mathbf{E}(A x+b))((A x+b)-\mathbf{E}(A x+b))^{\top}\right] \\
& =\mathbf{E}\left[(A x+b-A \mathbf{E}(x)-b)(A x+b-A \mathbf{E}(x)-b)^{\top}\right] \\
& =\mathbf{E}\left[A(x-\mathbf{E}(x))(x-\mathbf{E}(x))^{\top} A^{\top}\right] \\
& =A \mathbf{E}\left[(x-\mathbf{E}(x))(x-\mathbf{E}(x))^{\top}\right] A^{\top} \\
& =A \operatorname{Cov}(x) A^{\top} .
\end{aligned}
$$

Variance in Terms of Expected Value

$$
\begin{equation*}
\operatorname{Cov}(x)=\mathbf{E}\left(x x^{\top}\right)-\mathbf{E}(x) \mathbf{E}(x)^{\top} . \tag{5}
\end{equation*}
$$

The proof of this fact is analogous to the proof of (3).
Positive definiteness. The covariance matrix is positive definite. That is, $\operatorname{Cov}(x) \succ 0$.
To review, there are two equivalent definitions of positive definiteness. A symmetric matrix $Q=Q^{\top}$ is positive definite ($Q \succ 0$) if either of the following equivalent properties hold.
(i) All eigenvalues of Q are positive: $\lambda_{i}>0$.
(ii) All quadratic forms of Q are positive: $x^{\top} Q x>0$ for all $x \neq 0$.

Also, we can define a "negative definite" matrix $Q \prec 0 \Longleftrightarrow-Q \succ 0$. We also write that one matrix is larger than another in the positive definite sense by writing $Q \succ R \Longleftrightarrow Q-R \succ 0$. If a matrix has at least one positive eigenvalue and at least one negative eigenvalue, we say that it is "indefinite". To prove positive definiteness, we use the quadratic form definition.

Proof.

$$
\begin{aligned}
v^{\top} \mathbf{C o v}(x) v & =v^{\top} \mathbf{E}\left[(x-\mathbf{E}(x))(x-\mathbf{E}(x))^{\top}\right] v \\
& =\mathbf{E}\left[v^{\top}(x-\mathbf{E}(x))(x-\mathbf{E}(x))^{\top} v\right] \\
& =\mathbf{E}\left[\left(v^{\top}(x-\mathbf{E}(x))\right)^{2}\right]
\end{aligned}
$$

This is the expected value of a quantity that is always nonnegative. The only way it can be zero for all $v \neq 0$ is if $x=\mathbf{E}(x)$. In other words, the random variable x needs to not be random at all. In this case, we actually have $\operatorname{Cov}(x)=0$. If x is random, then the quadratic form is positive whenever $v \neq 0$, and therefore $\operatorname{Cov}(x) \succ 0$.

Expected Value of Quadratic Form If $Q=Q^{\boldsymbol{\top}}$ and x is a random vector with $\mathbf{E}(x)=\mu$ and $\operatorname{Cov}(x)=\Sigma$, then we can evaluate the expected value of a quadratic form using the formula

$$
\mathbf{E}\left(x^{\top} Q x\right)=\mu^{\top} Q \mu+\operatorname{tr}(Q \Sigma)
$$

Proof. To prove this fact, we will use the notion of trace of a square matrix, which is just the sum of the diagonal entries of the matrix. If A and B are matrices such that $A B$ and $B A$ are both square, then the trace has the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Now compute:

$$
\begin{array}{rlr}
\mathbf{E}\left(x^{\top} Q x\right) & =\mathbf{E}\left(\mathbf{t r}\left(x^{\top} Q x\right)\right) & \text { since } a=\operatorname{tr}(a) \text { for scalar } a . \\
& =\mathbf{E}\left(\operatorname{tr}\left(Q x x^{\top}\right)\right) & \text { using } \mathbf{t r}(A B)=\operatorname{tr}(B A) \\
& \left.=\operatorname{tr}\left(\mathbf{E}\left(Q x x^{\top}\right)\right)\right) & \text { trace and expectation commute } \\
& \left.=\operatorname{tr}\left(Q \mathbf{E}\left(x x^{\top}\right)\right)\right) & \text { linearity of expectation } \\
& =\operatorname{tr}\left(Q\left(\mathbf{C o v}(x)+\mathbf{E}(x) \mathbf{E}(x)^{\top}\right)\right) & \text { using (5) } \\
& =\operatorname{tr}\left(Q\left(\Sigma+\mu \mu^{\top}\right)\right) & \\
& =\operatorname{tr}(Q \Sigma)+\operatorname{tr}\left(Q \mu \mu^{\top}\right) & \text { using } \boldsymbol{\operatorname { t r }}(A B)=\operatorname{tr}(B A) \text { again }
\end{array}
$$

As a sanity check, we can verify that the formula has the correct limiting behavior. First, if x is not random at all, then $\Sigma=0$ and $x=\mu$, and we obtain $\mathbf{E}\left(x^{\top} Q x\right)=\mu^{\top} Q \mu$, as expected. If x has zero mean, then $\mu=0$ and $\mathbf{E}\left(x^{\top} Q x\right)=\operatorname{tr}(Q \Sigma)$. So the quadratic form has a larger value when x has more variance.

2.3 Multivariate Normal Distributions

We write this as: $x \sim \mathcal{N}(\mu, \Sigma)$, where μ is the mean and Σ is the covariance.
The probability density function (pdf) of a Multivariate Gaussian Distribution is given by:

$$
f(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}(\operatorname{det} \Sigma)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

If $x \sim \mathcal{N}(\mu, \Sigma)$, then $z:=\Sigma^{-\frac{1}{2}}(x-\mu)$ has a standard normal distribution, $z \sim \mathcal{N}(0, I)$. To find the matrix square root, take an eigenvalue decomposition: $\Sigma=U \Lambda U^{\top}$. Because $\Sigma \succ 0$ (it's a covariance matrix), the eigenvalue decomposition is the same as the singular value decomposition. The matrix square root is:

$$
\Sigma^{\frac{1}{2}}=U\left[\begin{array}{lll}
\lambda_{1}^{\frac{1}{2}} & & \tag{6}\\
& \ddots & \\
& & \lambda_{n}^{\frac{1}{2}}
\end{array}\right] U^{\top}
$$

Although a matrix has 2^{n} possible square roots (we can write $\pm \lambda_{i}^{1 / 2}$ for each i), there is only one that positive definite. The MATLAB command for computing this positive definite matrix square root is $\operatorname{sqrtm}(A)$. This is different from $\operatorname{sqrt}(A)$, which is the element-wise square root (not the same!).

In the single-variable case, we computed the probability that $x \sim \mathcal{N}(\mu, \sigma)$ lies in some symmetric interval about the mean, i.e., $\mathbf{P}(\mu-a \leq x \leq \mu+a)$. The analogous quantity for a multivariate Gaussian is the confidence ellipsoid.

Since the density $f(x)$ is proportional to $\exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$, the contours of constant density (and their interiors) are given by the nested sets:

$$
S_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid(x-\mu)^{\top} \Sigma^{-1}(x-\mu) \leq \alpha\right\}
$$

This set is an ellipsoid. To see why, make the standard normal substitution:

$$
S_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid\left\|\Sigma^{-1 / 2}(x-\mu)\right\|^{2} \leq \alpha\right\}=\left\{x \in \mathbb{R}^{n} \mid\|z\|^{2} \leq \alpha\right\}
$$

We have seen this sort of ellipse before. It is a standard control ellipsoid:

$$
\left\{x \mid\left\|\Sigma^{-1 / 2}(x-\mu)\right\|^{2} \leq \alpha\right\}=\left\{\mu+\Sigma^{1 / 2} z \mid\|z\| \leq \alpha\right\}=\mu+\left\{\sqrt{\alpha} \Sigma^{1 / 2} w \mid\|w\| \leq 1\right\}
$$

To plot this, we should compute the SVD (or eigenvalue) decomposition as in (6). Then the confidence ellipsoid is centered at μ and has its axes pointing in the u_{i} directions, with corresponding lengths $\sqrt{\alpha} \sqrt{\lambda_{i}}$.

The probability associated with this level ellipsoid is:

$$
\begin{aligned}
p & =\mathbf{P}\left(x \in S_{\alpha}, x \sim \mathcal{N}(\mu, \Sigma)\right) \\
& =\mathbf{P}\left(\|z\|^{2} \leq \alpha, z \sim \mathcal{N}(0, I)\right) \\
& =\mathbf{P}\left(z_{1}^{2}+\cdots+z_{n}^{2} \leq \alpha, z_{i} \sim \mathcal{N}(0,1)\right) \\
& =\mathbf{P}\left(w \leq \alpha, w \sim \chi_{n}^{2}\right) \\
& =F_{\chi_{n}^{2}}(\alpha)
\end{aligned}
$$

In other words, the CDF of the Chi-squared distribution! To find which α corresponds to a desired probability p, we can invert this cdf:

$$
\alpha=F_{\chi_{n}^{2}}^{-1}(p)
$$

Some useful MATLAB commands for computing the CDF and inverse CDF of a Chi-squared distribution:

- CDF: $\mathrm{p}=\operatorname{chi2cdf(alpha,n)}$
- Inverse CDF: alpha $=\operatorname{chi2inv(p,n)}$

Fig. 5 below shows an example of a $n=2$ dimensional Gaussian with various contours shown.

Figure 5: Confidence ellipsoids for different values of p. Each ellipse contains on average a fraction p of all the points. If $x \sim \mathcal{N}(\mu, \Sigma)$, then the confidence ellipsoid for a given p is the ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-\mu)^{\top} \Sigma^{-1}(x-\mu) \leq \alpha\right\}$, where $\alpha=F_{\chi_{n}^{2}}^{-1}(p)$. The ellipsoid is centered at μ and its axes point in the directions u_{i} with lengths $\sqrt{\alpha} \sqrt{\lambda_{i}}$, where $\left(\lambda_{i}, u_{i}\right)$ are the eigenvalue-eigenvector pairs of the covariance matrix Σ.

